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1. Introduction

Most people are familiar with the Riemann zeta function,

ζ(s) =

∞∑
n=1

1

ns
, ℜ(s) > 1.

It can be shown to have an analytic extension to the entire complex plane, except for a
simple pole at s = 1, and it satisfies a functional equation relating the values of ζ(s) and
ζ(1− s). The zeta function is famous for its many connections to number theory, and the
mysterious arithmetic properties is carries with it. Here we will discuss the zeta function
itself, and a few examples of a more general class of functions, called L-functions.

2. The functional equation

One of the first important properties of the zeta function, is its expansion as an Euler
product:

ζ(s) =
∏

p prime

(1− p−s)−1,

which, when regarded as a formal identity, is a consequence of unique factorisation of
integers. The individual factors of the product are called the Euler factors, so there is an
Euler factor for each prime. But there is in fact a factor missing. It turns out it is helpful
to also consider the so called ‘infinite’ Euler factor,

ζ∞(s) = π−s/2Γ
(s
2

)
,

where Γ is the usual Gamma function. We define the completed zeta function as Z(s) =
ζ∞(s)ζ(s). This brings us to probably the most important theorem regarding the zeta
function.

Theorem 2.1. The function Z(s) can be extended to an analytic function on C \ {0, 1},
with simple poles at 0 and 1. The completed zeta function also satisfies the functional
equation

Z(s) = Z(1− s).

The proof makes use of a few important results from Fourier analysis. Namely, we will
need the following:

Definition 2.2. The Jacobi theta function is θ(z) =
∑

n∈Z e−πn2z = 1+2
∑∞

n=1 e
−πn2z.

Lemma 2.3. The Jacobi theta function satisfies

θ(z−1) =
√
zθ(z).
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The proof of this fact follows from the Poisson summation formula and the fact that

the function z 7→ e−πz2

is its own Fourier transform. For a proof of the lemma assuming
the Poisson summation formula, see Appendix B.

Proof of theorem 2.1. For ℜ(s) > 1 we have that

Z(s) = π−s/2Γ
(s
2

)
ζ(s)

= π−s/2
∑
n≥1

n−s

∫ ∞

0

e−tts/2
dt

t

=
∑
n≥1

∫ ∞

0

e−t

(
t

πn2

)s/2
dt

t
.

Using the substitution y = t
πn2 , we get that this equals∑

n≥1

∫ ∞

0

e−πn2yys/2
dy

y
.

Because of absolute convergence of the sum-integral when ℜ(s) > 1, this is equal to∫ ∞

0

∑
n≥1

e−πn2yys/2
dy

y
.

We write h(y) =
∑

n≥1 e
−πn2y = 1

2 (θ(y) − 1). The transformation property of the theta

function (Lemma 2.3) tells us that h
(

1
y

)
= 1

2 (
√
y − 1) +

√
yh(y).

We now split the integral up in two:∫ ∞

0

h(y)ys/2
dy

y
=

∫ 1

0

h(y)ys/2
dy

y
+

∫ ∞

1

h(y)ys/2
dy

y

The latter integral converges for all complex s, and so it is the first one that we must
pay close attention to. Using the substitution y 7→ 1

y and the transformation property, it

equals ∫ 1

0

h(y)ys/2
dy

y
=

∫ 1

∞
h(1/y)y−s/2 dy

−y

=

∫ ∞

1

h(1/y)y−s/2 dy

y

=

∫ ∞

1

1

2
(
√
y − 1)y−s/2 dy

y
+

∫ ∞

1

y(1−s)/2h(y)
dy

y

=

∫ ∞

1

1

2
(y(1−s)/2 − y−s/2)

dy

y
+

∫ ∞

1

y(1−s)/2h(y)
dy

y

= − 1

1− s
− 1

s
+

∫ ∞

1

y(1−s)/2h(y)
dy

y
.

Combining with the other integral, we see that

Z(s) =

∫ ∞

1

h(y)
(
y(1−s)/2 + ys/2

) dy

y
− 1

1− s
− 1

s
.
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The integral converges uniformly on compact subsets (this is not obvious, but we will
leave this as an aside for the analysts among us to check) and defines Z(s) as an analytic
function on the entire complex plane except for obvious poles at s = 0, 1. Furthermore,
the functional equation Z(s) = Z(1− s) is clear. □

3. Dirichlet L-functions

The Riemann zeta function is only a specific function in a much more general class. In
general, we call any function of the form

L(s, an) =

∞∑
n=1

an
ns

an L-function. For arbitrary sequences an there is no reason to suspect it has an analytic
extension to a larger domain or satisfies any kind of functional equation. However, a
general trend in number theory seems to be that whenever the sequence an is based on
some ‘arithmetic or analytic object’, like a Dirichlet or Hecke character, or a modular
form, then (usually) the L-function does in fact have such an extension, and satisfies a
functional equation similar to that of the completed Riemann zeta function.

In this section we will turn to L-functions based on Dirichlet characters. A Dirichlet
character modulo m > 1 is a homomorphism χ : (Z/mZ)∗ → C∗. We usually extend
such a character to a function Z → C by setting

χ(n) =

{
χ(n mod m) if gcd(n,m) = 1,

0 otherwise.

The conjugate character χ is given by χ(n) = χ(n). If k is any multiple of m and χ is a
Dirichlet character modulo m, we can define χ∗ by

χ∗(n) =

{
χ(n) if gcd(n, k) = 1,

0 otherwise.

Then χ∗ is a Dirichlet character with modulus k, and we say that it is induced by χ. If a
Dirichlet character is not induced by any character of a stricly smaller modulus, we call it
primitive. Lastly, we call a Dirichlet character even if χ(−1) = 1, and odd if χ(−1) = −1.

Given a Dirichlet character, we define the associated Dirichlet L-function as

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

It converges for all s with large enough real part. If χ is a primitive character modulo m,
we define the completed L-function as

Λ(s, χ) =
( π

m

)−(s+a)/2

Γ

(
s+ a

2

)
L(s, χ),

where a = 0 if χ is even, and 1 if it is odd. We have the following analogue of Theorem
2.1.

Theorem 3.1. Suppose χ is a non-trivial primitive Dirichlet character of modulus m.
Then the completed Dirichlet L-function can be extended to an analytic function on the
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entire complex plane, and satisfies the functional equation

Λ(1− s, χ) =
ia
√
m

τ(χ)
Λ(s, χ),

where τ(χ) is the Gauss sum associated to χ.

For the reader who is unfamiliar with Gauss sums, see Appendix A for the necessary
information. We also need analogues of Definition 2.2 and Lemma 2.3.

Definition 3.2. The theta function associated to χ is the function defined by θχ(z) =∑
n∈Z χ(n)na

√
z
a
e−πn2z/m = 2

∑
n≥1 χ(n)n

a
√
z
a
e−πn2z/m.

Lemma 3.3. The theta function associated to χ satisfies the transformation law

θχ(z
−1) =

√
mz

(−i)aτ(χ)
θχ(z).

The proof can again be found in Appendix B.

Proof of Theorem 3.1. Similar to the case of the Riemann zeta function, we can rewrite
the completed L-function as

Λ(s, χ) =
( π

m

)−(s+a)/2 ∑
n≥1

χ(n)n−s

∫ ∞

0

e−tt−(s+a)/2 dt

t

=

∫ ∞

0

∑
n≥1

na√y
a
χ(n)e−πn2y/mys/2

dy

y

=
1

2

∫ ∞

0

θχ(y)y
s/2 dy

y
,

where we used the substitution t = πn2y
m . We again split the integral up into a part going

from 0 to 1 and 1 to infinity:

1

2

∫ 1

0

θχ(y)y
s/2 dy

y
+

1

2

∫ ∞

1

θχ(y)y
s/2 dy

y
.

The latter integral again converges for all s, so we focus on the first. Using the substitution
y 7→ 1

y and Lemma 3.3, this integral equals∫ 1

0

θχ(y)y
s/2 dy

y
=

∫ 1

∞
θχ(y

−1)y−s/2 dy

−y

=

∫ ∞

1

√
my

(−i)aτ(χ)
θχ(y)y

−s/2 dy

y

=

√
m

(−i)aτ(χ)

∫ ∞

1

θχ(y)y
(1−s)/2 dy

y
,

and hence

Λ(s, χ) =

√
m

2(−i)aτ(χ)

∫ ∞

1

θχ(y)y
(1−s)/2 dy

y
+

1

2

∫ ∞

1

θχ(y)y
s/2 dy

y
.

Both integrals converge uniformly on compact sets, and this defines an analytic function
on C. It is left to the reader to check that it satisfies the functional equation (hint:
Lemma A.3 will be useful). □
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Dirichlet characters can be further generalized to so-called Hecke characters, which
also have an associated L-function which follows a similar functional equation. Hecke’s
original proof of this fact again associates certain theta functions to these characters
which transform in similar ways to the ones above. The proof, like the one above, is easy
in the sense that (apart from the Poisson summation formula) it only requires relatively
basic analysis. It can however at times be hard to follow what is going on, with all the
massive integrals and sums floating around. One of the great feats of the 20th century was
John Tate’s famous thesis [Tat50]. In it, Tate used generalizations of Fourier analysis and
the Poisson summation formula to p-adic fields, to generalize the above techniques and
subsequently remove the need for special theta functions. It also clarified the mysterious
appearance of the ‘infinite Euler factor’ ζ∞(s) in the definition of the completed zeta
function, and the similar factor in the completed Dirichlet L-function.

Appendix A. Gauss sums

Let χ be a Dirichlet character modulo m. For c ∈ Z we define its Gauss sum as

τ(χ, c) =
∑

n mod m

χ(n)e2πicn/m.

We will also write τ(χ) = τ(χ, 1).

Lemma A.1. If χ is a primitive character modulo m, and c and m are not coprime,
then τ(χ, c) = 0.

Proof. Let m′ = m
gcd(m,c) . By primitivity there exists u ∈ (Z/mZ)∗ with u ≡ 1 mod m′

and χ(u) ̸= 1 (check this!). Let v be such that uv ≡ 1 mod m. Then v ≡ 1 mod m′, and
as n runs through a complete residue system of Z/mZ, so does vn. Hence

χ(u)τ(χ, c) =
∑

n mod m

χ(un)e2πicn/m =
∑

n mod m

χ(n)e2πicvn/m.

We see that e2πicn/m is an m′-th root of unity, and thus rasing to the power v (which is
1 mod m′), we see that this is∑

n mod m

χ(n)
(
e2πicn/m

)v

=
∑

n mod m

χ(n)e2πicn/m = τ(χ, c).

Since we chose u cuch that χ(u) ̸= 1, we must have that τ(χ, c) = 0. □

Lemma A.2. For a primitive character we have that τ(χ, c) = χ(c)τ(χ).

Proof. If c is not coprime to the modulus this follows directly from the previous lemma.
If c is coprime to the modulus, then as n runs through a residue system modulo m, then
so does cn. Hence

χ(c)τ(χ, c) =
∑

n mod m

χ(cn)e2πicn/m =
∑

n mod m

χ(n)e2πin/m = τ(χ).

The statement now follows from the fact that χ(c)χ(c) = |χ(c)| = 1 (since a character on
a finite group must take values in the unit circle). □

Lemma A.3. If χ is primitive mod m, then |τ(χ)| =
√
m. Put differently, we have

τ(χ)τ(χ) = χ(−1)m.
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Proof. On the one hand, using the previous lemma we see that

τ(χ, c)τ(χ, c) = χ(c)χ(c)τ(χ)τ(χ) = |χ(c)|2|τ(χ)|2,
and thus ∑

c mod m

τ(χ, c)τ(χ, c) = (m− 1)|τ(χ)|2.

On the other hand we can write out the definitions to see that∑
c mod m

τ(χ, c)τ(χ, c) =
∑

c mod m

∑
u,v mod m

χ(u)χ(v)e2πic(u−v)/m

=
∑

u,v mod m

χ(u)χ(v)
∑

c mod m

(
e2πi/m

)c(u−v)

.

On easily shows the latter sum is 0, unless u = v, in which case it is m. Hence this
reduces to ∑

u mod m

χ(u)χ(u)m = (m− 1)m.

From this the lemma follows. □

Appendix B. Theta functions

In this appendix we will prove the necessary transformation laws of the theta functions
needed for the proofs of the functional equations.

For a suitable class of functions, we can define the Fourier transform f̂ of a function f
by

f̂(ξ) =

∫ ∞

0

f(t)e−2πiξtdt.

We have the following important theorem from Fourier analysis.

Theorem B.1 (Poisson summation formula). For f ‘sufficiently nice’, we have that∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

The proof can be found in any book on the topic, for instance, [Fol99, Theorem 8.32].
It follows from elementary properties of the Fourier transform that we also have

(1)
∑
n∈Z

f(pn+ t) =
∑
n∈Z

1

p
f̂

(
n

p

)
e2πi

n
p t.

To make use of this to proof our desired transformations, we will need a special function

to apply the P.S.F. to. We will use the function given by f(x) = xae−πx2

, a ∈ {0, 1}.
This function is special because it is an eigenfunction of the Fourier transform. It is left

as an exercise to the reader to check that f̂ = (−i)af .

Proof of Lemma 2.3. If we write f(x) = e−πx2

, the theta function is θ(z) =
∑

n∈Z f(n
√
z).

By equation (1), this is equal to
∑

n∈Z
1√
z
f̂
(

n√
z

)
. Since f is its own Fourier transform,

this is exactly 1√
z
θ
(
1
z

)
, which proves the transformation law. □

The proof for the transformation of the theta function associated to a Dirichlet char-
acter is a little more involved, and requires some facts about Gauss sums, which can be
found in Appendix A.
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Proof of Lemma 3.3. This time we write f(x) = xae−πx2

. In that case, we get that

θχ(z) =
√
m

∑
n∈Z

χ(n)f

(
n
√
z√
m

)
.

This is not yet in a form to which Poisson summation can be applied. To achieve this,
we rewrite the sum as a double sum∑

n∈Z

χ(n)na
√
z
a
e−πn2z/m =

∑
b mod m

χ(b)
∑
k∈Z

(mk + b)a
√
z
a
e−π(mk+b)2z/m

=
√
m

∑
b mod m

χ(m)
∑
k∈Z

f

(
(mk + b)

√
z√

k

)
.

We can apply Poisson summation to the latter sum. By Equation (1), we get

√
m

∑
b mod m

χ(m)
∑
k∈Z

1√
mz

f̂

(
k√
mz

)
e2πikb/m

=
(−i)a√
mz

√
m

∑
k∈Z

f

(
k√
mz

) ∑
b mod m

χ(b)e2πikb/m

=
(−i)a√
mz

√
m

∑
k∈Z

f

(
k√
mz

)
τ(χ, k).

By Lemma A.2, this is
(−i)aτ(χ)√

mz

√
m

∑
k∈Z

χ(k)f

(
k√
mz

)
which we recognize as precisely

(−i)aτ(χ)√
mz

θχ(z
−1).

The lemma now follows by replacing χ by χ and rearranging. □
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