A journey though Iwasawa theory

Niels Ketelaars

Leiden University

3 July 2023

Kummer	
000000	

Iwasawa 00 $\substack{p\text{-adic }L\text{-functions}\\ \text{oo}}$

The Main Conjecture $_{\rm O}$

Let p be an odd prime.

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	00	00	0

Let p be an odd prime.

At the dawn of algebraic number theory (~ 1850), Ernst Kummer was interested in the class numbers of the fields $\mathbf{Q}(\zeta_p)$.

Let p be an odd prime. At the dawn of algebraic number theory (~1850), Ernst Kummer was interested in the class numbers of the fields $\mathbf{Q}(\zeta_n)$.

THEOREM (Kummer). The class number of the cyclotomic field $\mathbf{Q}(\zeta_p)$ is divisible by p if and only if p divides the numerator of one of the *Bernoulli* numbers $B_2, B_4, \ldots, B_{p-3}$.

Let p be an odd prime. At the dawn of algebraic number theory (~1850), Ernst Kummer was interested in the class numbers of the fields $\mathbf{Q}(\zeta_p)$.

THEOREM (Kummer). The class number of the cyclotomic field $\mathbf{Q}(\zeta_p)$ is divisible by p if and only if p divides the numerator of one of the *Bernoulli* numbers $B_2, B_4, \ldots, B_{p-3}$.

The Bernoulli numbers are defined by

$$\frac{t}{e^t - 1} = \sum_{k \ge 0} B_k \frac{t^k}{k!}.$$

werden. Ferner sei $\varepsilon_1(\alpha), \varepsilon_2(\alpha) \dots \varepsilon_{\mu-1}(\alpha)$ ein System von Fundamental-Einheiten für die aus λ^{ten} Wurzeln der Einheit gebildeten complexen Zahlen, und Δ die Determinente der Größen: $l\varepsilon_1(\alpha), l\varepsilon_2(\alpha), \dots l\varepsilon_{\mu-1}(\alpha)$ $l\varepsilon_1(\alpha^{\varepsilon}), l\varepsilon_2(\alpha^{\varepsilon}), \dots l\varepsilon_{\mu-1}(\alpha^{\varepsilon})$ $\vdots \mu^{-2}$ $l\varepsilon_1(\alpha^{\varepsilon}), l\varepsilon_2(\alpha^{\varepsilon}), \dots l\varepsilon_{\mu-1}(\alpha^{\varepsilon})$.

Kummer
000000

Iwasawa 00 p-adic L-functions

The Main Conjecture

werden. Ferner sei $\varepsilon_1(\alpha), \ \varepsilon_2(\alpha), \ldots, \varepsilon_{\mu-1}(\alpha)$ ein System von Fundamental-Einheiten für die aus λ^{ten} Wurzeln der Einheit gebildeten complexen Zahlen, und Δ die Determinente der Größsen: $l \varepsilon_1(\alpha), \ l \varepsilon_2(\alpha), \ldots, l \varepsilon_{\mu-1}(\alpha)$ $l \varepsilon_1(\alpha^{\varepsilon}), \ l \varepsilon_2(\alpha^{\varepsilon}), \ldots, l \varepsilon_{\mu-1}(\alpha^{\varepsilon})$ $\vdots \ \mu^{\mu-2}, \ l \varepsilon_2(\alpha^{\varepsilon}), \ldots, l \varepsilon_{\mu-1}(\alpha^{\varepsilon}).$

Here $\alpha = \zeta_p$, and g is a primitive root modulo p. Thus $\Delta = \text{Reg}(\mathbf{Z}[\zeta_p]^{\times}).$

Ferner sei

$$e(\alpha) = \sqrt{\frac{(1-\alpha^{\varepsilon})(1-\alpha^{-\varepsilon})}{(1-\alpha)(1-\alpha^{-1})}},$$
welches eine ganze complexe Einheit ist, und sei *D* die Deter-
minante der Größen:

$$le(\alpha), \quad le(\alpha^{\varepsilon}) \dots le(\alpha^{\varepsilon})^{\mu-2},$$

$$le(\alpha^{\varepsilon}), \quad le(\alpha^{\varepsilon}) \dots le(\alpha^{\varepsilon})^{\mu-1},$$

$$\stackrel{i}{\underset{\substack{i \\ \mu=2\\ le(\alpha^{\varepsilon}), \quad le(\alpha^{\varepsilon}) \dots le(\alpha^{\varepsilon})}},$$

$$e(\alpha) = \sqrt{\frac{(1-\zeta_p^g)(1-\zeta_p^{-g})}{(1-\zeta_p)(1-\zeta_p^{-1})}}$$

D is the regulator of the subgroup of units generated by the Galois conjugates of $e(\alpha)$.

Niels Ketelaars

$$P = \phi(\beta), \phi(\beta^3) \phi(\beta^5) \dots \phi(\beta^{\lambda-2}).$$

Kummer

0000000

The product P is essentially the product of the Bernoulli numbers B_2, \ldots, B_{p-3} .

Kummer

Iwasawa

 $\mathop{p-{\rm adic}}_{\rm OO} L{\rm -functions}$

The Main Conjecture

Iwasawa

 $\mathop{p-\mathrm{adic}}_{\mathrm{OO}} L\text{-functions}$

The Main Conjecture

$$\frac{(2\pi)^{(p-1)/2}}{2p^{p/2}}\operatorname{Reg}(\mathbf{Z}[\zeta_p]^{\times})h = \prod_{\chi \neq 1} L(\chi, 1)$$

Kummer 0000000 Iwasawa

p-adic L-functions

The Main Conjecture

$$\frac{(2\pi)^{(p-1)/2}}{2p^{p/2}}\operatorname{Reg}(\mathbf{Z}[\zeta_p]^{\times})h = \prod_{\chi \neq 1} L(\chi, 1)$$

The values $L(\chi, 1)$ at odd characters are given by Bernoulli numbers, and for even characters we have

$$L(\chi, 1) = \frac{-1}{G(\chi^{-1})} \sum_{a \in (\mathbf{Z}/p\mathbf{Z})^{\times}} \chi^{-1}(a) \log(1 - \zeta_p^a)$$

Niels Ketelaars

A journey though Iwasawa theory

*) Ich habe nicht allein diese Klassenzahl, sondern auch die entsprechenden für alle nicht aus den einfachen Wurzeln der Gleichung $\alpha^{\lambda} = i$, sondern aus den Perioden derselben gebildeten complexen Zahlen vollständig gefunden, und daraus hewiesen, dafs der Factor $\frac{D}{\Delta}$ für sich genau die Anzahl der nicht äquivalenten Klassen aller aus den zweigliedrigen Perioden $\alpha + \alpha^{-1}$, $\alpha^2 + \alpha^{-2}$ etc. gebildeten complexen Zahlen ausdrückt, also auch stets eine ganze Zahl ist.

Iwasawa

 $\mathop{p-{\rm adic}}_{\rm OO} L{\rm -functions}$

The Main Conjecture

*) Ich habe nicht allein diese Klassenzahl, sondern auch die entsprechenden für alle nicht aus den einfachen Wurzeln der Gleichung $\alpha^{\lambda} = i$, sondern aus den Perioden derselben gebildeten complexen Zahlen vollständig gefunden, und daraus hewiesen, daß der Factor $\frac{D}{\Delta}$ für sich genau die Anzahl der nicht äquivalenten Klassen aller aus den zweigliedrigen Perioden $\alpha + \alpha^{-1}$, $\alpha^2 + \alpha^{-2}$ etc. gebildeten complexen Zahlen ausdrückt, also auch stets eine ganze Zahl ist.

Kummer notes that the factor $D/\Delta(=$ index of the cyclotomic units in the full unit group) is also equal to the class number h^+ of $\mathbf{Q}(\zeta_p)^+ = \mathbf{Q}(\zeta_p + \zeta_p^{-1})$.

Iwasawa

p-adic L-functions

The Main Conjecture

*) Ich habe nicht allein diese Klassenzahl, sondern auch die entsprechenden für alle nicht aus den einfachen Wurzeln der Gleichung $a^{\lambda} = i$, sondern aus den Perioden derselben gebildeten complexen Zahlen vollständig gefunden, und daraus hewiesen, daß der Factor $\frac{D}{\Delta}$ für sich genau die Anzahl der nicht äquivalenten Klassen aller aus den zweigliedrigen Perioden $\alpha + \alpha^{-1}$, $\alpha^2 + \alpha^{-2}$ etc. gebildeten complexen Zahlen ausdrückt, also auch stets eine ganze Zahl ist.

Kummer notes that the factor $D/\Delta(=$ index of the cyclotomic units in the full unit group) is also equal to the class number h^+ of $\mathbf{Q}(\zeta_p)^+ = \mathbf{Q}(\zeta_p + \zeta_p^{-1})$. Kummer later remarks in a letter to Kronecker that h^+ seems to always be coprime to p. This has been verified for all $p < 2^{31}$.

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	00	00	0

Let $\omega : (\mathbf{Z}/p\mathbf{Z})^{\times} \to \mathbf{Z}_p^{\times}$ be the unique character with $a \equiv \omega(a) \mod p$, and write $A(i) = \{a \in A \mid \sigma a = \omega^i(\sigma)a \text{ for all } \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})\}.$

Let $\omega : (\mathbf{Z}/p\mathbf{Z})^{\times} \to \mathbf{Z}_p^{\times}$ be the unique character with $a \equiv \omega(a) \mod p$, and write $A(i) = \{a \in A \mid \sigma a = \omega^i(\sigma)a \text{ for all } \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})\}.$

THEOREM (Herbrand). Let *i* odd. If $A(i) \neq 0$, then *p* divides the numerator of B_{p-i} .

Let $\omega : (\mathbf{Z}/p\mathbf{Z})^{\times} \to \mathbf{Z}_p^{\times}$ be the unique character with $a \equiv \omega(a) \mod p$, and write $A(i) = \{a \in A \mid \sigma a = \omega^i(\sigma)a \text{ for all } \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})\}.$

THEOREM (Herbrand). Let *i* odd. If $A(i) \neq 0$, then *p* divides the numerator of B_{p-i} .

Questions:

- 1. Is the converse true?
- 2. Is the order of A(i) equal to the exact power of p dividing B_{p-i} ?

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	•0	00	0

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	•0	00	0

THEOREM (Iwasawa). Let $h_n = \# \operatorname{Cl}(\mathbf{Q}(\zeta_{p^n}))$. Then there exist integers μ, λ, ν such that

 $\operatorname{ord}_p h_n = \mu p^n + \lambda n + \nu$

for all $n \gg 0$.

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	•0	00	0

THEOREM (Iwasawa). Let $h_n = \# \operatorname{Cl}(\mathbf{Q}(\zeta_{p^n}))$. Then there exist integers μ, λ, ν such that

$$\operatorname{prd}_p h_n = \mu p^n + \lambda n + \nu$$

for all $n \gg 0$.

Main important idea: $\Gamma := \operatorname{Gal}(\mathbf{Q}(\zeta_{p^{\infty}})/\mathbf{Q}(\zeta_p)) \cong \mathbf{Z}_p.$

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	•0	00	0

THEOREM (Iwasawa). Let $h_n = \# \operatorname{Cl}(\mathbf{Q}(\zeta_{p^n}))$. Then there exist integers μ, λ, ν such that

$$\operatorname{prd}_p h_n = \mu p^n + \lambda n + \nu$$

for all $n \gg 0$.

Main important idea: $\Gamma := \operatorname{Gal}(\mathbf{Q}(\zeta_{p^{\infty}})/\mathbf{Q}(\zeta_p)) \cong \mathbf{Z}_p.$

Each $\mathscr{Y}_n := p$ -power torsion of $\operatorname{Cl}(\mathbf{Q}(\zeta_{p^n}))$ is naturally a $\mathbf{Z}_p[\Gamma/\Gamma^{p^n}]$ module, so $\mathscr{Y}_{\infty} = \varprojlim \mathscr{Y}_n$ is naturally a module over $\Lambda(\Gamma) = \varprojlim \mathbf{Z}_p[\Gamma/\Gamma^{p^n}]$ (in fact, finitely generated and torsion).

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	0•	00	0

THEOREM. There exists a map with finite kernel and cokernel from \mathscr{Y}_∞ to a module of the form

$$\bigoplus_{i=1}^{s} \mathbf{Z}_p[[T]]/(p^{m_i}) \oplus \bigoplus_{j=1}^{t} \mathbf{Z}_p[[T]]/(f_j^{n_j})$$

where each f_j is a *distinguished* irreducible polynomial.

THEOREM. There exists a map with finite kernel and cokernel from \mathscr{Y}_∞ to a module of the form

$$\bigoplus_{i=1}^{s} \mathbf{Z}_p[[T]]/(p^{m_i}) \oplus \bigoplus_{j=1}^{t} \mathbf{Z}_p[[T]]/(f_j^{n_j})$$

where each f_j is a *distinguished* irreducible polynomial.

Iwasawa's result holds now with $\mu = \sum_i m_i$ and $\lambda = \sum_j n_j \deg(f_j)$.

THEOREM. There exists a map with finite kernel and cokernel from \mathscr{Y}_∞ to a module of the form

$$\bigoplus_{i=1}^{s} \mathbf{Z}_p[[T]]/(p^{m_i}) \oplus \bigoplus_{j=1}^{t} \mathbf{Z}_p[[T]]/(f_j^{n_j})$$

where each f_j is a *distinguished* irreducible polynomial.

Iwasawa's result holds now with $\mu = \sum_i m_i$ and $\lambda = \sum_j n_j \deg(f_j)$. We call $p^{\mu} \prod_i f_i^{n_j}$ the characteristic polynomial of the module \mathscr{Y}_{∞} .

Kummer	Iwasawa	p-adic L-functions	The Main Conjecture
000000	00	•0	0

In 1964, Kubota and Leopoldt found a p-adic analogue of the Dirichlet L-function

$$L_p(\chi, \cdot) \colon \mathbf{Q}_p \to \mathbf{C}_p$$

that interpolates the values of the complex L-function at negative integers.

Kummer	Iwasawa	p-adic L-functions	The Main Conjecture
000000	00	•0	0

In 1964, Kubota and Leopoldt found a p-adic analogue of the Dirichlet L-function

$$L_p(\chi, \cdot) \colon \mathbf{Q}_p \to \mathbf{C}_p$$

that interpolates the values of the complex *L*-function at negative integers. These functions are quite simple, in the sense that there are power series $f_i \in \mathbf{Z}_p[[T]]$ such that

$$f_i((1+p)^{1-s}-1) = L_p(\omega^i, s)$$

THEOREM. Let $h_n^- = h_n/h_n^+$. Write $f_i = p^{\mu_i}P_iU_i$ with $P_i \in \mathbf{Z}_p[[T]]$ distinguished of degree λ_i and $U_i \in \mathbf{Z}_p[[T]]^{\times}$. Then for all $n \geq 1$ with $\max \lambda_i < p^{n-1} - p^{n-2}$,

$$\operatorname{ord}_p h_n^- = \mu p^n + \lambda n + \nu,$$

where $\mu = \sum_{i} \mu_{i}$ and $\lambda = \sum_{i} \lambda_{i}$.

THEOREM. Let
$$h_n^- = h_n/h_n^+$$
. Write $f_i = p^{\mu_i}P_iU_i$ with $P_i \in \mathbf{Z}_p[[T]]$
distinguished of degree λ_i and $U_i \in \mathbf{Z}_p[[T]]^{\times}$. Then for all $n \geq 1$ with $\max \lambda_i < p^{n-1} - p^{n-2}$,

$$\operatorname{ord}_p h_n^- = \mu p^n + \lambda n + \nu,$$

where $\mu = \sum_{i} \mu_{i}$ and $\lambda = \sum_{i} \lambda_{i}$.

In fact, we know that $\mu = 0$ for all p, and for all $p < 2^{31}$ we have $\nu = 0$ and the formula holds for all n.

K

THEOREM. Let
$$h_n^- = h_n/h_n^+$$
. Write $f_i = p^{\mu_i} P_i U_i$ with $P_i \in \mathbf{Z}_p[[T]]$
distinguished of degree λ_i and $U_i \in \mathbf{Z}_p[[T]]^{\times}$. Then for all $n \geq 1$ with $\max \lambda_i < p^{n-1} - p^{n-2}$,

$$\operatorname{ord}_p h_n^- = \mu p^n + \lambda n + \nu,$$

where $\mu = \sum_{i} \mu_{i}$ and $\lambda = \sum_{i} \lambda_{i}$.

In fact, we know that $\mu = 0$ for all p, and for all $p < 2^{31}$ we have $\nu = 0$ and the formula holds for all n.

Question: What is the relation between the characteristic polynomial of \mathscr{Y}_{∞} and the power series f_i ?

K

Kummer	Iwasawa	<i>p</i> -adic <i>L</i> -functions	The Main Conjecture
000000	00	00	•

Write $\mathscr{Y}_{\infty}(i) = \{ y \in \mathscr{Y}_{\infty} \mid \sigma y = \omega^{i}(\sigma) y \text{ for all } \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_{p})/\mathbf{Q}) \}.$

Write $\mathscr{Y}_{\infty}(i) = \{ y \in \mathscr{Y}_{\infty} \mid \sigma y = \omega^{i}(\sigma) y \text{ for all } \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_{p})/\mathbf{Q}) \}.$

THEOREM (Mazur–Wiles). Let $i \not\equiv 0 \mod p - 1$ odd. The characteristic polynomial of $\mathscr{Y}_{\infty}(i)$ is (up to a unit) equal to

$$f_{p-i}\left(\frac{1+p}{1+T}-1\right).$$

Write $\mathscr{Y}_{\infty}(i) = \{ y \in \mathscr{Y}_{\infty} \mid \sigma y = \omega^{i}(\sigma) y \text{ for all } \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_{p})/\mathbf{Q}) \}.$

THEOREM (Mazur–Wiles). Let $i \not\equiv 0 \mod p - 1$ odd. The characteristic polynomial of $\mathscr{Y}_{\infty}(i)$ is (up to a unit) equal to

$$f_{p-i}\left(\frac{1+p}{1+T}-1\right)$$

COROLLARY. Let i odd. Then

$$\operatorname{ord}_p \# A(i) = \operatorname{ord}_p(B_{p-i}).$$