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1. Introduction

The law of quadratic reciprocity is one of the most famous and important
results from number theory. Known already to mathematicians like Euler
and Legendre, it wasn’t until the start of the 19th century when Gauss
gave the first (complete) proof, who called it his theorematis fundamentalis
(see also Figure 1). Near the end of the 19th century, many more proofs
were known, and a large part of algebraic number theory was concerned
with finding generalizations, to gain a deeper understanding of the theorem.
Below we first give a short historical outline and motivation, after which we
will give a proof based on one of Gauss’s proofs. Finally we will discuss the
theorem in the context of modern algebraic numebr theory, and mention a
few generalizations.

Figure 1. Gauss’s original formulation1from [Gau01].

2. Fermat, Euler and Legendre

This section is largely based on the first few chapters of David Cox’s book
[Cox13]. For proofs of the claims in this sections and additional information
we point the reader to this book.

The history of quadratic reciprocity begins with a famous result of Fermat,
that seems unrelated at first.

1“If p is a prime number of the form 4n+ 1, then p, or if p is of the form 4n+ 3, then
−p, will be a residue, respectively a non-residue, of those primes, that are, when positive,
a residue, respectively a non-residue of p itself.”
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Theorem 2.1 (Fermat). Let p be an odd prime. Then there exist integers
x, y with p = x2 + y2 if and only is p ≡ 1 mod 4.

It is fairly unexpected that the primes which can be written as a sum
of squares can be characterized by their residue class modulo 4. A natural
generalization is to consider for fixed n ∈ Z, which primes can be written as
x2 + ny2, and in particular we wonder if these primes can again be charac-
terized by their residue class modulo some fixed number. This question was
examined by Fermat and Euler among others. Euler quickly realized Fer-
mat’s original theorem had to do with the fact that −1 is a square in Z/pZ
if and only if p ≡ 1 mod 4. For our more general problem, is is therefore
natural to consider for which primes we have that −n is a square modulo
p. This was Euler’s motivation to study squares in Z/pZ, and it is how he
eventually stumbled across the law of quadratic reciprocity. He noticed that
for two odd primes p and q, there was a relation between whether p is a
square modulo q, and whether q is a square modulo p. Before we state the
theorem in full, we need some notation due to Legendre.

Definition 2.2. For t ∈ Z and p an odd prime, the Legendre symbol is(
t

p

)
def
=


0 if p|t,
1 if p - t and t is a square mod p,

−1 if p - t and t is not a square mod p.

Before we continue we note some nice properties of the Legendre symbol.

Proposition 2.3. For a, b ∈ Z, we have that

(1)
(
ab
p

)
=
(
a
p

)(
b
p

)
;

(2)
(
a
p

)
≡ a

p−1
2 mod p;

(3)
(
−1
p

)
= (−1)

p−1
2 .

These properties will become very important later on; in fact, the second
is so fundamental that it was Legendre’s original definition of the symbol.

Remark 2.4. As a consequence of Proposition 2.3, the Legendre symbol

induces a homomorphism (Z/pZ)∗ → {±1} given by a mod p 7→
(
a
p

)
. It

is surjective, and its kernel is precisely the set of squares. Thus the set of
squares forms a subgroup of index 2, from which it follows that there are as
many squares as non-squares in (Z/pZ)∗. This will become important later
in the proof of Lemma 3.3.

We can know present the theorem in its most common form.

Theorem 2.5 (Quadratic Reciprocity). Let p, q be distinct odd primes.
Then we have that (

q

p

)
=

(
p

q

)
(−1)

p−1
2

q−1
2 .
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The fact that there is any relation at all between whether p is a square
modulo q and whether q is a square modulo p is incredibly unexpected and
remarkable. Paired with the fact that the theorem is incredibly easy to state,
many consider it one of the most beuatiful theorems in number theory.

If we write

p∗
def
=

(
−1

p

)
p = (−1)

p−1
2 p,

it follows from Proposition 2.3 that the above formulation is equivalent to

saying that
(
q
p

)
=
(
p∗

q

)
. This is the formulation that is most commonly

found in algebraic number theory, and it is the one we will prove below.

3. Gauss and quadratic reciprocity

The proof we give in this section is largely based on Gauss’s sixth proof,
and can be found in the well-known book of Ireland and Rosen [IR90, Chap-
ter 6, p. 70]. Recall that a primitive n-th root of unity is a complex number
ζ satisfying ζn = 1 and ζk 6= 1 for 1 ≤ k < n. For the remainder of this
article, ζ will be be a fixed primitve p-th root of unity. We start with a
lemma about these roots of unity.

Lemma 3.1. Let c ∈ Z. Then
p−1∑
t=0

ζct =

{
p if p|c,
0 otherwise.

Proof. If p|c, we have ζct = 1 for all t, and hence the sum is equal to p.
Otherwise we see that

p−1∑
t=0

ζct =
ζcp − 1

ζc − 1
= 0. �

Definition 3.2. For a ∈ Z, the quadratic Gauss sum is

τa
def
=

p−1∑
t=0

(
t

p

)
ζat.

We write τ = τ1.

At first this may seem like a rather arbitrary definition. Intuitively one
can think about it as a way of encoding all different Legendre symbols of p
into a single number. This becomes more clear in the following lemma.

Lemma 3.3. τa =
(
a
p

)
τ .

Proof. In the case that a is a multiple of p, the right hand side is equal to
0. We also have that ζat = 1 for all t, thus

τa =

p−1∑
t=0

(
t

p

)
,
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and this is indeed 0 because of Remark 2.4, saying there are as many squares
as non-squares in (Z/pZ)∗.

If p - a, we have
(
a
p

)2
= 1, so

τa =

p−1∑
t=0

(
t

p

)
ζat =

(
a

p

)2 p−1∑
t=0

(
t

p

)
ζat =

(
a

p

) p−1∑
t=0

(
at

p

)
ζat,

where the last equality follows from the multiplicativity of the Legendre
symbol (Proposition 2.3). Now note the following: if t runs through a system
of representatives of Z/pZ, then so does s = at. Thus(

a

p

) p−1∑
t=0

(
at

p

)
ζat =

(
a

p

) p−1∑
s=0

(
s

p

)
ζs =

(
a

p

)
τ. �

We now arrive at what is probably the most important ingredient of the
proof of quadratic reciprocity.

Proposition 3.4. τ2 = p∗.

Proof. The main idea is to write the sum
∑p−1

a=0 τaτ−a in two different ways,
and then setting these two expressions equal. Using Lemma 3.3 we get that

for p - a, we have τaτ−a =
(
a
p

)(
−a
p

)
τ2 =

(
−1
p

)
τ2, and hence we see that

p−1∑
a=0

τaτ−a =

(
−1

p

)
(p− 1)τ2.

On the other hand the definition of τa gives us that

p−1∑
a=0

τaτ−a =

p−1∑
a=0

p−1∑
x,y=0

(
x

p

)(
y

p

)
ζaxζ−ay =

p−1∑
x,y=0

(
x

p

)(
y

p

) p−1∑
a=0

ζa(x−y).

By Lemma 3.1 the inner sum is equal to 0 for x 6= y, and otherwise it is
equal to p. Thus we can rewrite the double sum over x and y as a single
sum over x, by replacing all instances of y with x, since the terms for which
x 6= y are zero. What remains is

p−1∑
x,y=0

(
x

p

)(
y

p

) p−1∑
a=0

ζa(x−y) =

p−1∑
x=0

(
x2

p

)
p = (p− 1)p.

From this we see that we must have
(
−1
p

)
(p − 1)τ2 = (p − 1)p, or put

differently
(
−1
p

)
τ2 = p. Lastly we can multiply this equality by

(
−1
p

)
, to

arrive at the fact that

τ2 =

(
−1

p

)
p. �

At last, we are ready to give the proof of the law of quadratic reciprocity.
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Proof of Theorem 2.5. We will use the same general idea as the previous
proof, and express τ q+1 in two ways. On one hand,

τ q+1 = (τ2)
q−1
2 τ2 = (p∗)

q−1
2 p∗ ≡

(
p∗

q

)
p∗ mod q,

where we used Proposition 3.4 for the second equality, and part 2 of Propo-
sition 2.3 for the last congruence.

On the other hand, we can write out that

τ q+1 =

(
p−1∑
t=0

(
t

p

)
ζt

)q

τ.

If we were to expand this using repeated binomial expansion, we would
certainly get all the individual terms of the sum raised to the power q, plus
a number of cross terms. Since q is prime, one can easily show are binomial
coefficients

(
q
k

)
are divisible by q for 1 < k < q. Hence the coefficients of the

cross terms are divisible by q. If we therefore consider the entire expression
modulo q, we are left with

τ q+1 ≡

(
p−1∑
t=0

(
t

p

)q

ζqt

)
τ = τqτ =

(
q

p

)
τ2 =

(
q

p

)
p∗ mod q,

where the last two equalities follow from Lemma 3.3 and Proposition 3.4

respectively. Thus we see that
(
q
p

)
p∗ ≡

(
p∗

q

)
p∗ mod q, and because p

and q are distinct, p∗ is invertible mod q, and hence
(
q
p

)
≡
(
p∗

q

)
mod q.

Finally, because -1 and 1 are never congruent modulo an odd prime, we get

that
(
q
p

)
=
(
p∗

q

)
. �

The careful reader may have noticed we are working modulo q while our
expressions can contain complex numbers. Using facts about rings one can
easily show that this is still valid.2

4. Artin and Langlands

After Gauss had given this proof in 1818, many number theorists were
convinced there was something deeper going on in the proof. The connection
with roots of unity in particular, that is nowhere to be found in the theorem
itself, is plainly clear in the proof. This was one of the main reasons for the
beginning of class field theory, a subfield of algebraic numebr theory, dealing
mainly with so called Abelian extensions of number fields and generalizations
of the classical reciprocity law. One of the highlights of class field theory
was the proof at the start of the 20th century of the Artin reciprocity law.
This theorem, which to this day is still one of the most important results in
number theory, makes it possible to place quadratic reciprocity and Gauss’s
proof in a broader context, making it possible to gain a much more deep

2We are in fact working in the ring Z[ζ]/(q).
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understanding. We refer the interested reader to the accessible article of
Lenstra and Stevenhagen [LS00].

In modern number theory, the Langlands program is a central object of
study. It is a collection of conjectures that can in a way be seen as the
‘ultimate’ generalization of quadratic reciprocity. Both the aforementioned
theorem of Artin, but also the modularity theorem, which was the basis for
Wiles’s proof of Fermat’s Last Theorem, are special cases of Langlands’s
conjectures. In 2018 Robert Langlands won the Abel prize for his work. See
for instance [Sle18] for a short and accessible introduction.

The law of quadratic reciprocity thus may seem simple, and is probably
nothing more than a cool party trick at first. Nevertheless, there is a lot
of beautiful mathematics behind it, and it would be difficult to say were
number theory as a whole would currently be if it hadn’t been discovered.
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